
page 1

SOFTWARE-DRIVEN PRODUCTS

– ORGANIZATIONAL WILLINGNESS  AND 
FUNDAMENTALS OF METHODOLOGY

WHITEPAPER



page 2

Management Summary

Software-driven products are characterized by an overall increase in complexity, 

with this complexity shifting from mechanical elements to software. 

As the pressure to innovate is increasing, companies are being confronted with 

the challenge of mastering this complexity. 

The key to this is a methodical view of the overall system, for example using 

methods from the fi eld of systems engineering. 

However, the human factor is just as critical to success when merging mechanics, 

electronics and software, as is the challenge of opening up the organization to 

interdisciplinary thinking. 



page 3

Content

1 The world is becoming increasingly digital and software-

 driven - and so are its products!     

2 Why you need to take a new look at your lifecycle 

 management system for software-driven products  

3 Rethinking PLM and ALM - getting to grips with increasing

 complexity     

4  Summary        

page 04

page 06

page 10

page 18



page 4

1 The world is becoming increasingly digital and 

 software-driven - and so are its products!

Digitalization in itself is nothing new, no uncharted territory yet to be explored. 

Digitalization has been around for a long time, and it is here to stay. Although the 

interconnection of things is proceeding rapidly, only the surface of the possibilities 

it off ers has been scratched. This can also be seen in our day-to-day lives, and it 

might well be that in fi ve years‘ time no one will remember that a bicycle was once 

a purely mechanical product. 

The driver and enabler of this development is software. Increasingly, the functionality 

of a product no longer derives from its electromechanical qualities alone, but rather 

from an ever closer symbiosis between software and hardware, be it in cars, in 

medical technology, in mechanical and plant engineering – or even in bicycles. 

From a business perspective, these developments represent both an opportunity 

and a challenge. 

An opportunity because, given increased competitive and innovative pressure, 

software-driven products make it possible to up the tempo and reduce development 

times, but also open the way to completely new business models. Take e-bikes, 

for example. Because sensors already control pedal assist and the display is 

connected to your mobile phone via Bluetooth, it is just a short step to cloud-based 

measurement of training success. Or how about a power boost if the hill is again just 

a bit too steep – for a small charge paid by mobile phone of course?

A challenge because this change is anything but trivial. Even if variance may decrease 

on the mechanical side, the complexity of the overall system will increase. If only 

because behind the hardware and software there are often diff erent development 

teams, or at least interdisciplinary groups of people with diff erent ways of thinking, 

who drive the innovation cycles in their discipline at diff erent speeds.



page 5

Thought must also be given to how the overall system can be validated – especially 

in the context of safety-critical products. Speaking of which, regulations may require 

that it be possible to trace every development step and every individual decision 

right back to the defi nition of requirements, depending on the industry and product 

in question (more on this in the BHC white paper „Software-driven products – 

Establish an End-to-end traceability“). When it comes to increasing complexity, 

most companies are likely to have similar experience when addressing the issue of 

merging hardware and software for the fi rst time – if not earlier.

Even though overall product complexity will increase in the future, a large proportion 

of the complexity will shift from the electromechanical side to the software. Although 

that alone will not make things any easier, removing the constraints imposed by the 

physical world will allow the application of other methods for mastering complexity, 

with a disproportionately higher level of effi  ciency and scalability. Those who 

master this discipline will therefore be able to boost their performance to a far 

greater degree than the degree to which the eff ort required to master complexity 

increases. Unfortunately, however, it is also true that this is easier said than done; 

and those who do not manage to do this will sooner or later be overwhelmed by 

the complexity.

Figure 1: Increasing product complexity and ever shorter development times



page 6

2 Why you need to take a new look at your lifecycle

 management system for software-driven products

The diff erent histories of conventional engineering and 
software development have led to two diff erent and specialized

worlds of tool and methods: PLM and ALM

The functional symbiosis between mechanical engineering, electronics and soft-

ware and a shift of functional complexity toward software is made possible by a 

steady increase in computing power. However, this also has an impact on the scope 

of the software, and wherever there is interaction between a large number of ele-

ments, there is, statistically speaking, unfortunately also an increased probability 

that errors will occur. By way of comparison: a Linux kernel from 1994 required just 

under 200,000 lines of code; by 2018, that fi gure had risen to over 25 million. To 

make matters worse, a lack of structure reduces the effi  ciency of troubleshooting. 

Over time, the methods toolbox used for software development evolved into what 

we know today as application lifecycle management (ALM), and its process model 

has been incorporated into modern systems engineering.

In the world dominated by electromechanical elements, on the other hand, the 

need to support the design process, manage the technical data for components, 

and the ability to work together as a team is the main issue. In many companies, 

focus was and still is placed on managing the many individual components, while 

ensuring consistency from the requirements specifi cation through to the fi nished 

product is not usually supported by a product lifecycle management (PLM) con-

cept (method+tool) that has been established consistently throughout the compa-

ny. Even if state-of-the-art PLM solutions today were able to do much more than 

they are currently used for, the strengths and focus of use still reside in a large 

number of disciplines that have simply no relevance for a pure software product: 

3D-based design, mechanical calculations, assembly planning, and support for 

manufacturing, procurement, and logistics processes in the supply chain.



page 7

Neither parallel PLM and ALM worlds nor half-hearted integrations 
do justice to software-driven products

A company that has grown up with purely mechanical or electromechanical products 

and is now increasingly integrating software will struggle with the challenge that 

the existing sets of tools and methods come primarily from the world of PDM/PLM. 

However, the complexity of software products is not simply added to the existing 

complexity. Rather, the overall complexity is increasing exponentially. Ultimately, 

the number of participants, the number of process-related interfaces and the need 

for coordination among participants, whose ways of working and thinking are very 

diff erent, all increase. The requirements that have to be fulfi lled do not become less 

but rather more demanding and, in particular with regard to safety aspects (in the 

sense of functional safety), also more stringent.

In our customer projects, we observe that companies often respond to the 

emergence of software in products with one of the following approaches, which 

we present in simplifi ed form:

Either the software is seen as a hardware appendage 

(along the lines of “that little bit of software is just another part number”)

Figure 2: Software as a hardware appendage

Software components are equated with electromechanical components and 

are assigned a part number. While you may still be able to identify at least the 

ECU in a product structure, it will ultimately be impossible to identify all the 

mutual dependencies in a fl at BOM.



page 8

Or an independent parallel ALM world is set up alongside the PLM world 

(along the lines of “I don’t know what they’re doing over there, but I’m not 

interested either”)

Freed from the fetters of electromechanical development, the software 

developers can give free rein to their dynamic capabilities in their ALM world. 

The software is optimized to meet current customer requirements in short 

iterations and in a very agile manner. The thing that is usually overlooked in 

a scenario of complete separation is mutual synchronization, and this then 

becomes an inconsistency that is carried over into production and the fi nished 

product.

It is extremely rare that either approach is ideal. Treating software as a mere 

appendage to hardware may still work if the level of functional integration is not 

particularly high or the product is not subject to high rates of change. In other words, 

if the software is there to solve specifi c and clearly delineated and localized tasks 

and its impact on the overall system is not signifi cant. In addition, there should be 

no great expectations with regard to the agility of software development. 

Figure 3: Parallel PLM and ALM processes



page 9

The second approach may be correct purely from the perspective of the software, 

but not in a holistic view of the product and its value creation processes. Ensuring 

interaction and validation across the boundaries of diff erent tools and departments 

may then become a challenge that cannot be solved.

Depending on the complexity of the variance in a product and the relative size of 

the company, both strategies can work at least for a while. Fortunately, it is often 

enough the case that methodological and procedural defi ciencies are compensated 

for by motivated and competent employees. Moreover, companies quickly develop 

a remarkable level of tolerance and capacity for suff ering in the face of systemic 

shortcomings. This can escalate into an increased willingness to take risks, which 

results in inadequately validated products being brought to market. Customers will 

also accept a certain level of imperfection in the product for a while until they can 

no longer identify any added value compared with competitor products and simply 

disappear into the distance.

Figure 4: Comparison of PLM and ALM



page 10

3 Rethinking PLM and ALM – getting to grips with 

 increasing complexity

The „fi ne art“ therefore lies in making available processes, methods and tools that 

give all the domains involved in product development the space they need to 

fl ourish. At the same time, however, they have to be orchestrated and coordinated 

to ensure that the end product meets all the requirements and functions as a 

single unit. This is not primarily merely a question of tools, processes and methods 

but instead depends fi rst and foremost on whether a company is ready to make 

sweeping changes.

Willingness on the part of the organization

Unfortunately, the human factor is far too often underestimated when it comes 

time to make fundamental changes. And companies are made up of people. The 

challenge of developing a software-driven product may seem small to a young 

startup. But it can become an almost insurmountable obstacle for an established 

company with ingrained structures and practices. The problem is often not even the 

employees’ technical expertise but rather managing and orchestrating the whole 

ensemble or the organization’s lack of willingness to be orchestrated.

In practice, experience shows that this is one of the greatest challenges – this 

often means that projects and initiatives are launched with great enthusiasm but 

ultimately do not lead to the desired result. And the more ambitious and extensive 

a project, the more often this is the case. 

Merging hardware and software in a single product in an agile and reliable manner 

requires all participants to change their way of thinking. It is like two groups of friends 

with diff erent hobbies wanting to do more together – one group of friends are 

enthusiastic hikers, while the other prefers to go biking. One or the other hiker might 

even imagine that if they all want to do go on a trip together, the bikers can simply 

join them on their next hike. After all, anyone can hike but not everyone is keen on 

riding a bike. But that is, of course, not a long-term solution because it means that 

the bikers simply become “appendages” (along the same lines as software as an 



page 11

appendage). A solution that would work for everybody is, however, close at hand. 

Who says that a group trip has to mean everyone going on a hike? Getting together 

could also mean meeting up half way and enjoying a picnic together and meeting 

up again in the evening for a bite to eat. Finding this solution, however, requires 

that everyone involved think outside the box and be willing to look at things from a 

diff erent perspective.

Companies, however, are not usually dealing something as uncomplicated as 

a group trip. Instead, they are dealing with departments comprising dozens or 

even hundreds of people. The more heterogeneous the environment, the more 

important it is to hold this diverse group of people together and lead them toward 

the shared objective. In an orchestra, this is done by the conductor, on a building 

site, the architect in their role as site manager. In companies, on the other hand, 

this important coordinating function tends to be an afterthought or is carried out by 

people who do not know enough about interdisciplinary collaboration.

We therefore recommend that you actively oversee the changes and anchor 

coordination in your organization with a clear and strong mandate. Do not merely 

have someone performing this task on the side as a kind of hobby (someone who 

might actually have been the last person to volunteer). Choose people who are 

well respected and do not place too much focus on one particular area of expertise 

and who have, or are willing to acquire, a healthy mix of pragmatism and methods 

expertise. 



page 12

Methodological foundation

Once there is a willingness to accept new ways of thinking and working, the next 

step is to establish a joint procedural model for developing solutions. 

Let‘s return to the two groups of friends and assume they have „opened their minds“ 

and now want to fi nd a solution for the next trip that both the bikers and the hikers 

will enjoy equally.

During an impromptu web meeting, both groups decide that the trip should be to 

the Black Forest, and they also pick an appropriate restaurant together. Finding a 

suitable spot for the picnic is a little trickier – after all, it has to be easy for both the 

hikers and the bikers to reach and it needs to meet their respective needs. This 

synchronization point is also something that the friends have to decide on together. 

Once this has been done, each subgroup can make the most of it and plan their 

ideal hiking or biking route. Julia, who belongs to the group of bikers and works as 

risk manager, mentions that some of the trails in the area are often closed, which 

might make it diffi  cult for everyone to arrive at the picnic spot at the same time. To 

minimize the risk of this happening, they all agree that the two groups should call 

each other at around the halfway point so that they can compare their estimated 

times of arrival and modify their routes if necessary. They also make sure to pack 

some card games just in case, so that no one will get bored if they arrive early.

This type of planning, which might work intuitively in smaller private circles, needs 

to be actively controlled in the complex world of corporate reality. Methods used 

in systems engineering provide a suitable foundation. These already include 

extremely useful toolkits that can be used to gear all the components of a product 

or system to the shared requirements. Whether this involves you implementing 

one of the systems engineering standards exactly as specifi ed or merely using it 

as a guideline is almost a matter of preference – unless, of course, you have to 

provide proof of compliance with specifi ed standards to your customers or other 

stakeholders (as required in some industries), in which case, it is truly important. 



page 13

What is crucial is that your company internalizes an appropriate procedural model 

such as the V-model and uses it much like you would a compass. The approach is 

not unlike the one taken when planning the private trip: 

You describe all the requirements of the integrated product (an trip that includes a 

picnic and is neatly rounded off  in a leisurely manner), give thought to the functional 

architecture (journey, outdoor exercise, stops for something to eat), determine who 

makes which functional contribution (people who have bike racks on their cars do 

the driving, the others organize the picnic), identify risks (closed hiking/bike trails) 

and determine the integrative validation levels (one group calling the other at a 

certain time). Apart from that, each sub-discipline has all the freedom they need 

to play to its strengths (hikers: direct route with some rocky stretches, bikers: long, 

roundabout route with fl at trails).

Figure 5: Systems engineering V-model for synchronizing the domains



page 14

What does this mean in the context of a software-driven product? It is vital at the 

very beginning that you think about what the product should be able to do and 

what other requirements (e.g. standards) it has to meet. This should be done as 

impartially as possible and without a specifi c approach in mind. 

Describe what your product should be able to do 

Once the requirements pertaining to your product are clear, the next step is 

to determine the functionality that each individual sub-discipline (mechanics, 

electronics, software) will contribute. You are still in the phase in which all participants 

need to work together closely. Do not, however, succumb to the temptation of 

wanting to specify everything down to the last detail. Take an e-bike as an example: 

In order to satisfy a requirement regarding an „electronic bike lock“ function, all you 

need to specify at this stage is that there has to be some kind of mechanical locking 

mechanism that can be operated via software using the display on the bike. How 

this is actually implemented is, however, not yet relevant.

Design your systems in a way that makes sense

There are two important aspects to the architecture phase: to divide the system up 

sensibly and to provide an initial abstract defi nition of the interdependencies bet-

ween the system elements. In this context, “sensible” means that the dependencies 

between the subsystems should be kept to a minimum, because all coordination 

between the individual development teams in your company will from this point on 

revolve around these dependencies. As the project progresses, it is then important 

to describe the interfaces in ever-increasing detail until fi nally the product is com-

pletely defi ned (or defi ned as an MVP). 

Beyond initial development, the way in which the system is divided up and the de-

scription of the dependencies are also important for ongoing product maintenan-

ce. This approach allows the individual disciplines to fl ourish and drive innovations 

agilely at their own pace, provided that none of the limits imposed by the depen-

dencies of the subsystems are exceeded. As far as a software-driven product is 

concerned, this means that the possibilities on the software side are boundless 

provided that the hardware and mechanics do not impose any constraints.



page 15

Create a synchronization mechanism

If more comprehensive further developments are involved, multiple subsystems 

and disciplines almost always have to be taken into account because software 

alone can no longer be used to implement every new requirement; changes will 

also have to be made to the hardware. That is why your activities should include a 

development roadmap that indicates which major functional innovations and which 

extensions to the interfaces of the subsystems are planned.

Figure 6: The diff erent domains “software“ and “mechanics/electronics“ are synchronized, e.g. via 
synchronization points on a common roadmap

The overall system sets the pace and all the subsystems involved have to follow. For 

example, an e-bike manufacturer could bring an updated model to market every 

year. The development teams have to implement the main features planned for 

these annual updates in a timely manner, which of course means that the interfaces 

between the subsystems also need to be defi ned in the context of the architecture. 

The electronic bicycle lock function, for example, could look like this: 



page 16

0 km/h

35,7 km

unlocked

Speed

Distance

locked

Variant 1: Electrical spoke lock

Variant 2: Motor lock system

The software and mechanics/electronics teams 
agree to develop an electrical interface on a 
control unit that can be used to change and 
check the locked status.

There is no need to agree on technical 
implementation of the locking function as this is 
not relevant.

1

During development, the
mechanics/electronics 
team examines the use of 
an electric spoke lock or a 
motor lock system and 
decides in favor the latter.

This is, however, irrelevant
to the software team.

2

3a
The software team decides to use a virtual 
slider on the touch screen display. 

This is irrelevant to the mechanics team.

proximity recognition 
< 3m„Unlock“- Event

3b
A later SW version includes a locking
function that will also depend on whether
or not the owner‘s mobile phone is 
nearby. 

This further development is also 
irrelevant to the mechanics team

Figure 7: Example for the coordination of the “mechanics/electronics“ and “software“ teams



page 17

Otherwise, the two subsystems would develop independently of each other at dif-

ferent speeds. This means, for example, that a basic variant and a revamp of the 

mechanics/electronics could be planned for each model year, while new software 

versions are perhaps released in an agile manner monthly or at even shorter inter-

vals.

Dividing the system into the subsystems mechanics/electronics and software is of 

course only an example. More complex products may involve many other subsys-

tems and possibly even several parallel subsystems of the same type (e.g. several 

software subsystems). It is important to keep in mind that despite every eff ort to 

keep things simple, the interdependencies between these subsystems can quickly 

become very diverse and complex. It is therefore essential that your IT landsca-

pe helps you keep track of all these interdependencies as best possible (more on 

this topic in the BHC white paper „Software-driven products: Crucial capabilities for 

your PLM/ALM-tool-landscape“).

Be that as it may, establishing this type of method model lays a foundation that will 

enable you to meet the challenge of developing software-driven products reliably 

throughout the development process.



page 18

4  Summary

In the future, many products will be driven by software to a far greater degree than 

today. Although this means that product complexity will increase, methods exist that 

allow this complexity to be managed reliably. End-to-end systems engineering in 

particular provides crucial support. But this presupposes that companies establish 

a culture of change, are open to interdisciplinary thinking and are prepared to 

throw old habits overboard. Hardly anyone need be afraid of the unknown as most 

companies today are already putting much of this into practice in one way or another. 

There is often simply a lack of optimized and more target-oriented orchestration. 

BHC GmbH helps focus on what is important and brings with them methodological 

know-how and the experience gained in a wide-ranging portfolio of similar projects.



page 19

Do you have any comments or questions?

We look forward to your feedback at:

info@b-h-c.de

BHC GmbH

Konrad-Zuse-Str. 5

71034 Böblingen 

Germany

Telephone: +49 (0) 7031 20 5000 2 

E-Mail: info@b-h-c.de

© 2021 BHC GmbH. All rights reserved

LEGAL NOTICE

published by;
BHC GmbH

Contact:
Philipp Hasenäcker

philipp.hasenaecker@b-h-c.de

edition 1, 2021


